

Alaska Forum on the Environment 2014

Environmental Contaminants: Alaska Fish Monitoring Program

Bob Gerlach
Howard Teas
AK Dept of Environmental Conservation

Fish Monitoring Program:

Determine if Alaska's seafood and freshwater fishes have been negatively impacted by contaminants and monitor data trends

General Survey of Alaskan Fishes:

- Commercial, Subsistence, Recreational species
- Opportunistic sampling- cost saving approach
 - Samples collected at commercial, recreational and subsistence fish harvest sites

Selected coastal sites:

- Adjacent to anthropogenic activities: cities, discharges/runoff
- Historic mining sites

Fish Monitoring Program:

• Data is used to:

- Determine if there are any areas, species, or contaminants that warrant more in-depth sampling and evaluation.
 - Can be used to evaluate Water Quality
- Provide Alaskan residents with information to make an informed dietary decision based on Risks and Benefits of eating Alaskan Fish
- Respond to National Fish Consumption Advisories

Fish Consumption Advisories

- Goal is to protect public health but can be confusing:
 - National recommendations by EPA, FDA, ATSDR
 - International recommendations Canada, WHO
 - State and Local Advisories
- Can be confused with Water Quality Standards (WQS)
 - Fish Consumption Rate, Human Health Criterion
 - Goal of WQS are to protect water resources
- Fish are a highly nutritious food, a complex of nutrients and some fish may contain contaminants. Consumption Advisories evaluate the health risks vs. the health benefits of eating fish.

Target Analytes

Persistent Bioaccumulative Toxins

• Heavy Metals:

- Mercury: Total Mercury, Methyl-Mercury
- Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Selenium

Organochlorine Compounds:

- PCBs
- Dioxins and Furans
- Pesticides (Organochlorine Pesticides)

• Emerging Contaminants:

- Brominated Fire Retardants (PBDE)
- Poly-Fluorinated Compounds (PFC, PFOS, PFOA)
- Pharmaceuticals, personal care products

Bioaccumulation/Biomagnification

Bioaccumulation – increase in the concentration of a compound over time as the animal gets older/larger. Chemical accumulates faster than the animal can eliminate it.

Biomagnification – increase in the concentration of a substance or chemical up the trophic feeding level

Halibut: Mean THg/weight (kg)

Areas Fish Were Collected for the DEC Fish Monitoring Program

Number of Fish Samples per Region

Fish Monitoring Program		OCTOPUS-SQUID	12
		OYSTERS-SCALLOPS	141
ATKA MACKEREL	10	POLLOCK	195
BURBOT	27	ROCKFISH-BLACK	79
CAPELIN	45	ROCKFISH-DUSKY	66
CHAR-ARCTIC + DOLLY VARDEN	50	PACIFIC OCEAN PERCH	83
CRABS	368	ROCKFISH-YELLOWEYE	116
CISCO	47	ROCKFISH SPECIES	66
CLAMS, COCKLES, CHITON	359	SABLEFISH	249
COD	195	SALMON-CHINOOK	479
EULACHON (Candlefish)	35	SALMON-CHUM	302
GEODUCK	132	SALMON-PINK	188
GRAYLING	47	SALMON-RED	401
GREENLING	45	SALMON-SILVER	664
HALIBUT	1919	SAND LANCE	47
HERRING	32	SHARK	111
IRISH LORD-RED	19	SPINY DOGFISH	52
IRISH LORD-YELLOW	14	SHEEFISH	16
LAMPREY	10	SKATE	186
LINGCOD	230	SOLE	27
LONGNOSE SUCKER	3	STICKLEBACK	61
MUSSELS, BLUE	44	TROUT-LAKE	124
NORTHERN PIKE	572	WHITEFISH	142

Sources

Local

- Cities and Industrial production
- Natural Geologic sources
- Military Sites
- Resource Extraction-
 - mines, oil exploration

Long Range Transport

- Atmospheric
- Ocean Currents
- Animal migration
- Commercial transport

Pharmaceuticals + Personal Care Products (PPCP)

- Personal health care + cosmetic products, prescription and over-the-counter drugs, veterinary drugs
- Studies have shown that PPCPs are present in our nation's waterbodies.
- Detection at very low levels in fish
- No evidence of adverse human health effects from PPCPs in the environment
- But they may act as a stressor on certain organisms in the ecosystem from bacteria to aquatic animals

PPCPs

1,7-Dimethylxanthine	Clarithromycin	Hydrocodone	Propoxyphene
10-hydroxy-amitriptyline	Cocaine	Hydrocortisone	Propranolol
4-Epitetracycline	Cotinine	Ibuprofen	Ranitidine
Albuterol	DEET	Lincomycin	Sertraline
Alprazolam	Dehydronifedipine	Meprobamate	Simvastatin
Amitriptyline	Desmethyldiltiazem	Metformin	Sulfadimethoxine
Amlodipine	Diazepam	Methylprednisolone	Sulfamethazine
Amphetamine	Digoxigenin	Metoprolol	Sulfamethoxazole
Atenolol	Diltiazem	Miconazole	Tetracycline
Atorvastatin	Diphenhydramine	Naproxen	Thiabendazole
Azithromycin	Doxycycline	Norfloxacin	Triamterene
Benzoylecgonine	Enalapril	Norfluoxetine	Triclocarban
Benztropine	Erythromycin-H2O	Norverapamil	Triclosan
Caffeine	Fluoxetine	Ofloxacin	Trimethoprim
Carbamazepine	Furosemide	Oxycodone	Valsartan
Cimetidine	Gemfibrozil	Paroxetine	Verapamil
Ciprofloxacin	Hydrochlorothiazide	Promethazine	Virginiamycin
		Propoxyphene	Warfarin

Total PCBs (ppb)

	Salmon		Salmon near Waste Water Discharge		
	N	Mean ± SD	N	Mean ± SD	
Fry Composite	17	14 ± 21	3	43 ± 28	
Fillet	67	7.1 ± 5.6	5	5.4 ± 2.9	
Whole	17	7.8 ± 3.3	5	6.4 ± 1.6	

Pestici	des (ppb)	Salmon	Salmon near Waste Water Discharge
	Chlordanes	1.6 ± 0.84	0.64
Fry	DDT	6.2 ± 2.8	3.0
Composite	DDT Hexachlorobenzene	0.33 ± 0.18	0.13
Sample	Lindane and HCH	0.71 ± 0.96	0.10
HUR DE	Total Toxaphene	3.7 ± 3.0	1.2

Mercury Cycle

Mean Total Mercury: mg/kg (ppm)

Resource Extraction

geologic deposits – gold, mercury, trace metals

Long Range Transport

Atmospheric Mercury

Sources: - Anthropogenic (80%)

- Natural (20%)

Chemical Forms of Mercury and Residence Time

Gaseous Elemental Hg: ~ 1 year

Reactive Gaseous Hg: minutes-weeks

Particulate Hg: minutes-weeks

Global transport modelling

2.5

2.2

2.0

1.8

Average elemental mercury surface concentrations for July 2001 (ng/m3)

GRAHM (Global/Regional Atmospheric Heavy Metals Model) simulation – Ashu Dastoor, Meteorological Service of Canada, Environment Canada

Regional Differences in Mercury concentration in fish tissue

- NOAA study (Hall, et.al. 1976)
 - Total Mercury Concentration (skinless fillet)
 - Regional comparison:
 - Eastern Bering Sea
 - Gulf of Alaska
 - South East Alaska
 - British Columbia
 - Washington-Oregon

NOAA 1976 Hall et. al. Study

Alaska Forum on the Environment 2014

• Complex Issue:

- Varied sources of Environmental Contaminants
- Site specific and regional differences
- Possible Impacts on ecosystem health
 - Water quality
 - Animal health food quality
 - Public health
- Need for monitoring to determine presence and evaluate trends
- Need for clear information to the public

